SNOW COVER ATLAS OF SATLUJ BASIN

Sub basins: Pin, Spiti, Baspa, Jiwa, Parbati and Beas
(Integrated Studies of Himalayan Cryosphere A Project of Indian Space Research Organisation)

YEAR: 2014-15

State Centre on Climate Change
(State Council for Science Technology \& Environment, Shimla), Himachal Pradesh
\&
Space Applications Centre (ISRO)
Ahmedabad-380015

SNOW COVER ATLAS OF THE SATLUJ BASIN

Sub-basins: Pin, Spiti, Baspa, Jiwa, Parbati and Beas
(2014-15)

State Centre on Climate Change
(State Council for Science Technology \& Environment, Shimla), Himachal Pradesh
\&
Space Applications Centre (ISRO) Ahmedabad-380015

SPACE APPLICATIONS CENTRE (ISRO), AHMEDABAD - 380015

DOCUMENT CONTROL AND DATA SHEET

Report Number	SAC/EPSA/GHCAG/CSD/ SR/ $135 / 2018$
Month and year of publication	December 2018
Title	Snow cover Atlas of the Satluj basin
Type of Report	Scientific Report
No. of pages	150
No. of figures, Charts \& Tables	$110,18 \& 12$
Authors	B. P. Rathore, S. K. Singh, I. M. Bahuguna and A. S. Rajawat, Nishtha Gautam and S. S. Randhawa
No. of References	9
Originating Unit	Cryosphere Sciences Division, Geo-Sciences, Hydrology, Cryosphere Sciences and Aplications Group, Earth, Ocean, Atmosphere, Planetary Sciences and Applications area, Space Applications Centre (ISRO), Ahmedabad-15
Abstract	This atlas gives sub-basin-wise distribution of snow cover in the Satluj basin from October 2014 to June 2015. The sub-basins included in this report are Pin,
Spiti, Baspa, Jiwa, Parbati and Beas. The areal	
extent of snow cover was estimated in fully automatic	
mode using Normalized Difference Snow Index	
(NDSI) based algorithm. For this purpose, AWiFS	
sensor of Resourcesat satellite was used. This atlas	
gives snow cover products, statistics and seasonal	
snow depletion curves. It is expected that this data	
will be useful for hydrological and climatological	
applications.	

CONTENTS

Page No.

1. INTRODUCTION 1
2. STUDY AREA 2
3. DATA USED 2
4. NORMALISED DIFFERENCE SNOW INDEX 2
5. SNOW COVER MONITORING ALGORITHM 3
6. RESULTS AND DISCUSSIONS 4
PIN BASIN 8
SPITI BASIN 32
BASPA BASIN 56
JIWA BASIN 80
PARBATI BASIN 103
BEAS BASIN 127

1. Introduction

Snow covers almost 40 per cent of the Earth's land surface during Northern Hemisphere winter. This makes albedo and areal extent of snow as important component of the Earth's radiation balance (Foster and Chang, 1993). In addition, large areas in the Himalayas are also covered by snow during winter. Area of snow can change significantly during winter and spring. This can affect stream flow for rivers originating in the higher Himalayas. All the rivers originating from higher Himalayas receive almost 30-50 \% of annual flow from snow and glacier melt run off (Agarwal et al., 1983). In addition, snow pack ablation is highly sensitive to climatic variation. Increase in atmospheric temperature can influence snowmelt and stream runoff pattern (Kulkarni et al., 2002). Therefore, mapping of the areal extent and reflectance of snow are important parameter for various climatological and hydrological applications. In addition, extent of snow cover can also be used as input for numerous other applications.

Mapping and monitoring of seasonal snow cover using field methods are normally very difficult in a mountainous terrain, like the Himalayas. Therefore, remote sensing techniques have been extensively used for snow cover monitoring. Snow cover monitoring using satellite images were started by using the TIROS-1 satellite from April 1960 (Singer and Popham 1963). Since then, the potential for operational satellite-based mapping has been enhanced by the development of higher temporal frequency and satellite sensors with higher spatial resolution. In addition, satellites with better radiometric resolutions, such as NOAA have been used successfully for snow mapping (Hall et al., 1995). This is possibly due to the distinct spectral reflectance characteristics of snow in visible and near infrared regions. India has launched series of Indian Remote Sensing satellite (IRS) to study the different earth resources. Previously launched satellites have flown with many sensors having different spatial, temporal and spectral resolutions. Recently launched RESOURCESAT-1 satellite has three different sensors namely LISS III, LISS IV \& AWiFS with different spatial, temporal and spectral resolutions as desired for different applications. AWiFS (Advanced Wide Field Sensor) is an advanced version of earlier Indian satellite sensor WiFS (Wide Field Sensor) with improved spectral and spatial resolutions maintaining the same repetivity. There are a series of other polar orbiting satellites, like Landsat, NOAA and MODIS etc., which have provided information on different aspects of
snow. Geo-stationary satellites also proved their utility in mapping/monitoring the snow-covered regions. Information generated from satellite observations has been extensively used for snowmelt runoff modeling (Kulkarni et al., 1997).

2. Study Area:

The study area comprises of distribution of snow cover in Pin, Spiti, Baspa, Jiwa, Baspa, Parbati and Beas sub basins of Satluj basin. The location map of these sub basins is as per Figure 1.

3. Data used:

AWiFS data from October 2014 to June 2015 was used in this study.

4. Normalised Difference Snow Index (NDSI):

In general, the reflectance of snow is high at the red end of the visible spectrum. It tends to decline in the near-infrared region until 1090 nm , where slight gain in reflectance occurs and gives a minor peak at approximately 1090 to 1100 nm . One of the important difficulties in snow cover monitoring is the presence of cloud cover. Cloud has strong reflectivity in visible, NIR and SWIR regions while snow absorbs in SWIR, and this difference can be utilized for snow/cloud discrimination. Normalized Difference Snow Index (NDSI) utilize the normalized ratio of green and SWIR and is used as an automated approach for snow mapping addressing the shadow and cloud problems in snow bound areas.

Normalized Difference Snow Index was calculated using the ratio of green wavelength (band 2) and SWIR (band 5) of AWiFS sensor:

NormalizedDifferenceSnowIndex $($ NDSI $)=($ band $2-$ band5 $) /($ band $2+$ band5 $)$

To estimate NDSI, DN numbers were converted into reflectance. This involves conversion of digital numbers into the radiance values, known as sensor calibration, and then estimation of
reflectance from these radiance values. Various parameters needed for estimating spectral reflectance are maximum and minimum radiances and mean solar exo-atmospheric spectral irradiances in the satellite sensor bands, satellite data acquisition time, solar declination, solar zenith and solar azimuth angles, mean Earth-Sun distance etc. (Markham and Barker, 1987; Srinivasulu and Kulkarni, 2004).

5. Snow cover monitoring algorithm

An algorithm is developed to provide changes in the areal extent of snow (Kulkarni et. al., 2006). Snow extent is estimated at an interval of 5-days and 10-days, depending upon availabilities of AWiFS data. In 5-daily product, snow extent is generated scene-wise. In this product, snow and cloud extents are given. Estimate of cloud is important because, at times, snow is covered by cloud and this may be classified as non-snow area, leading to erroneous conclusions. In 10-daily product, three scenes are analyzed, if available. For example, 10 March product data of 5, 10 and 15 March was used. If any pixel is identified as snow on any one date then this pixel will be classified as snow on final product. This provides snow cover at an interval of 10 days, an important requirement in hydrological applications. Therefore, this product is generated basinwise. Since this product is using three scenes, probability becomes high that at least in one scene, pixel may be cloud-free and this helps in overcoming problem associated with snow under cloud cover. If three consecutive scenes are not available, then all available scenes in 10 days window was used in the analysis. Differentiation between water and snow is difficult using NDSI image. In addition, separation of snow and water pixels is also difficult based on reflectance due to mountain shadow. Therefore, in the present algorithm, water bodies are marked in pre-winter season and are masked in the final products during winter. Flow diagram of the algorithm is given in Figure 2.

6. Results and discussions

In this atlas, basin-wise snow cover statistics, maps, and seasonal depletion curve is given from October 2014 to June 2015. Snow ablation pattern varies from basin to basin, depending on area altitude distribution in the basins. For example, in the Jiwa and Beas river basin, which is located in lower altitude zone and contains few glaciers has shown and ablation of snow through out the winter season. Maximum snow cover was observed during first week of March that is 75% and 90% respectively. However, in case of Pin \& Parbati basins, located in high altitude region and large area is covered by glaciers has shown little or no ablation from January to April. For a period between October to December, snow ablation was observed in all basins.

Acknowledgements

This investigation was carried out under Integrated studies of Himalayan Cryosphere, at Space Applications Centre (ISRO), Ahmedabad. The authors are grateful to Shri D. K. Das, Director, Space Applications Centre, Ahmedabad for continuous guidance and encouragement during the investigation. Authors would like to thank Dr. Rajkumar Deputy Director, EPSA, SAC for their suggestions and comments on the manuscript.

References

Agarwal, K. G., Kumar, V. and T. Das, 1983, Melt runoff for a subcatchment of Beas basin. In Proceedings of the First National Symposium on Seasonal Snow Cover, New Delhi, India, April 28-30, 43 p.

Foster, J. L. and Chang, A. T. C., 1993, Snow cover, in Atlas of satellite observations related to global change. R. J. Gurney, C.L. Parkinson and J. L. Foster (eds.), Cambridge University Press, Cambridge, pp. 361-370.

Hall, D. K., Riggs, G. A. and Salomonson, V. V., 1995, Development of methods for mapping global snow cover using moderate resolution Image Spectroradiometer data. Remote Sensing of Environment, 54, pp. 127-140.

Kulkarni, A. V., Mathur, P., Rathore, B. P., Alex, S., Thakur N. and Kumar, M. 2002, Effect of global warming on snow ablation pattern in the Himalayas. Current Science, 83(2), pp 120-123.

Kulkarni A. V., Singh, S. K., Mathur, P. and Mishra, V. D., 2006, Algorithm to monitor snow cover using AWiFS data of RESOURCESAT for the Himalayan region. International Journal of Remote Sensing, 27(12), pp 2449-2457.

Kulkarni, A. V., Randhawa, S. S. and Sood, R. K., 1997, A stream flow simulation model in snow covered areas to estimate hydro-power potential: a case study of Malana nala, H.P. Proc. of the First international Conference on Renewable Energy- Small Hydro, Hyderabad, pp 761770.

Markham, B. L. and Barker, J. L., 1987, Thematic Mapper bandpass solar exoatmospheric irradiances. International Journal of Remote Sensing, 8(3), pp 517-523.

Singer, F. S. and Popham, R. W., 1963. Non-meteorological observations from satellite. Astronautics and Aerospace Engineering 1(3), 89-92.

Srinivasulu, J. and Kulkarni, A. V., 2004, A satellite based spectral reflectance model for snow and glacier studies in the Himalayan terrain. Proceedings of the Indian Academy of Science (Earth and Planetary Science), 113 (1), pp. 117-128.

Figure 1: Location map of Pin, Spiti, Baspa, Jiwa, Parbati and Beas sub-basins (Part of Satluj basin)

Figure 2: Algorithm for snow cover mapping using AWiFS data

$\mathscr{P I N}$ SUB-BASISN

AREAL EXTENT OF SNOW (5 DAILY)

BASIN NAME: PIN
BASIN AREA: $1266 \mathbf{~ s q ~ k m}$

S. No	Date	Snow cover (sq. km)	Snow cover (\%)	S. No	Date	$\begin{gathered} \text { Snow } \\ \text { cover } \\ (\text { sq. } \mathbf{k m}) \end{gathered}$	Snow cover (\%)
October 2014							
1.	01 Oct 2014	71 ©	6	3	04 oct2014	267	21
2.	02Oct 2014	209	17	4	30 Oct 2014	493	39
November 2014							
5.	2 Nov 2014	381.44	30				
December 2014							
6	1 Dec 2014	374	30	7	20 Dec 2014	1266	100
January 2015							
8	01 Jan 2015	1237	98	10	10 Jan 2015	1249	99
9	05 Jan 2015	1258	99	11			
February 2015							
12	04 Feb 2015	1260	100				
March 2015							
13.	04 March 2015	1196.69 ©	95	14.	06 March 2015	1266	100
April 2015							
15.	05 April 2015	1244.10 ©	98	17	12 April 2015	1266	100
16.	11 April 2015	1266.40	100	18	26 April 2015	1202.33	95
May 2015							
19.	03 May 2015	1203.46	95		11 May 2015	930.63	74
20.	06May 2015	1093.01	86	22	23 May 2015	930.63	74
June 2015							
23.	10 June2015	255.45	20 ©	25.	16 June 2015	765.61	61 ©
24.	11 June 2015	679.80	54 ©	26.	20 June 2015	603.00	48 ©

AREAL EXTENT OF SNOW (10 DAILY)

BASIN NAME: PIN
BASIN AREA: $1266 \mathbf{s q ~ k m}$

S. No	Date	Snow cover (sq. km)	Snow cover (\%)	S. No	Date	$\begin{gathered} \text { Snow } \\ \text { cover } \\ \text { (sq. km) } \end{gathered}$	Snow cover (\%)
October 2014							
1.	05 Oct 2014	266	21	2	25 oct2014	494	39
November 2014							
3.	2 Nov 2014	380	30				
December 2014							
4	5 Dec 2014	380	30	5	15 Dec 2014	1266	100
January 2015							
6	05 Jan 2015	1253	99				
March 2015							
7	04 March 2015	1266	100				
April 2015							
8	05 April 2015	1266	100		25 April 2015	1203	95
9	11 April 2015	1266	100				
May 2015							
11.	05 May 2015	1203.46	95		25 May 2015	937	74
12.	15 May 2015	937	74				
June 2015							

SNOW ACCUMULATION AND ABLATION CURVE

PIN SUB-BASIN (5 DAILY WITHOUT CLOUDY DATA)

SNOW ACCUMULATION AND ABLATION CURVE

SNOW COUER MAP

10 DALIY SNOW COVER MAP: PIN BASIN

DATA USED
02 Nov 2014
04 Nov 2014

DATA USED
DATA NOT AVALLABLE

DATA USED
data not avallable

SNOW

DATA USED
01F eb 2015 04 Feb 2015

DATA USED

DATA NOT AVALLABLE

DATA USED
data not avallable

DATA USED
03 June 2014
06 June 2014
09 June 2014

DATA USED
13 June 2014
16 June 2014
20 June 2014

DATA USED
28 June 2014

SPITI SUB-BASIN

AREAL EXTENT OF SNOW (5 DAILY)

BASIN NAME: SPITI

BASIN AREA: 8871 sq km

S. No	Date	Snow cover (sq. km)	Snow cover (\%)	S. No	Date	$\begin{gathered} \text { Snow } \\ \text { cover } \\ \text { (sq. km) } \end{gathered}$	Snow cover (\%)
October 2014							
1.	01 Oct 2014	136.72	1.54 ©	2	30 Oct 2014	505.36	5.69
3.	04 Oct 2014	483.76	5.45				
November 2014							
4.	02 Nov 2014	603.21	6.79				
December 2014							
5.	01 Dec 2014	974	11	6	20 Dec 2014	8326	94
January 2015							
7	01 Jan 2015	4304	49	9	10 Jan 2015	6285	71
8	05 Jan 2015	7066	80				
February 2015							
10.	01 Feb 2015	7839.53	88.37 ©	11.	04 Feb 2015	7839.43	88.37
March 2015							
12.	04 Mar 2015	8486.83	95.66	13	06 Mar 2015	8710.412	98.18
April 2015							
14.	04 April 2015	8565.54	96.55 ©	16	11 April 2015	6700.69	75.53
15.	07 April 2015	6054.40	68.24 ©	17	12 April 2015	6599.31	74.39
May 2015							
18.	03 May 2015	5526.97	62.30	20	11 May 2015	3000	34
19.	06 May 2015	4557.53	51.37	21	23 may 2015	4156	46
June 2015							
22.	10 June 2015	2448.09	27.59 ©	24.	20 June 2015	2206.45	24.87 ©
23	16 June2015	2351	27				

AREAL EXTENT OF SNOW (10 DAILY)

BASIN NAME: SPITI
BASIN AREA: 8871 sq km

S. No	Date	Snow cover (sq. km)	Snow cover (\%)	S. No	Date	Snow cover (sq. km)	Snow cover (\%)
October 2014							
1.	01 Oct 2014	483	5	2	30 Oct 2014	505	6
November 2014							
3.	02 Nov 2014	603	7				
December 2014							
4.	01 Dec 2014	974	11	5.	20 Dec 2014	8327	94
January 2015							
6.	01 Jan 2015	7066	80				
February 2015							
7.	01 Feb 2015	7839	88				
March 2015							
8.	04 Mar 2015	8710	98				
April 2015							
9	04 April 2015	8566	97	10	11 April 2015	6700	76
May 2015							
11	03 May 2015	5527	62		11 May 2015	3016	34
				13	23 May2015	4081	46
June 2015							
	15 June 2015	2395	27				

SNOW ACCUMULATION AND ABLATION CURVE

SNOW ACCUMULATION AND ABLATION CURVE

SNOW COUER MAP

10 DALLY SNOW COVER MAP: SPITI BASIN

DATA USED
010 ct 2014

DATA USED

data not available

DATA USED
30 Oct 2014

DATA USED
01Jan 2015
05 Jan 2015
10 Jan 2015

DATA USED
DATA NOT AVAILABLE

DATA USED
data not available

SNOW

10 DALLY SNOW COVER MAP: SPITI BASIN

DATA USED
04 March 2015
06 March 2015

DATA USED

DATA NOT AVALLABLE

DATA USED
data not avallable

SNOW

data not avallable

SNOW

DATA USED

04 April 2015 06 April 2015 07 April 2015

DATA USED

11 April 2015
12 April 2015

DATA USED
03 June 2014
04 June 2014
06 June 2014

DATA USED
11 June 2014
16 June 2014
20 June 2014

DATA USED
28 June 2014

BASPA SUB-BASIN

AREAL EXTENT OF SNOW (5 DAILY)

BASIN NAME: BASPA
BASIN AREA: 1096 sq km

S No	Date	Snow cover (sq km)	Snow cover (\%)	S No	Date	Snow cover (sq km)	Snow cover (\%)
October 2014							
1.	01 Oct 2014	180	16	3.	04 Oct2014	190	17
2.	02 Oct 2014	342	31	4.	30 Oct 2014	639	58
November 2014							
5.	02 Nov 2014	379	35	6	04 Nov 2014	339	31
December 2014							
7	18 Dec 2014		93	8	20 Dec 2014		95
January 2015							
9	01 Jan 2015		68	10	05 Jan 2015	90	
11	10 Jan 2015		85				
February 2015							
12.	01 Feb 2015	1060	97	13	4 Feb 2015	1065	97
March 2015							
14.	04 Mar 2015	1032	94	15	6 Mar 2015	1083	99
April 2015							
16.	05 Apr 2015	958	87	17.	11 Apr 2015	979	89
18	26 Apr 2015	875	80				
May 2015							
19.	03 May 2015	892	81	21.	11 May 2015	673	61
20.	06 May 2015	811	74	22.	23 May 2015	709	65
June 2015							
23.	04 June 2015	434	40	25.	16 June 2015	442	40
24.	11 June 2015	372	34				

AREAL EXTENT OF SNOW (10 DAILY)

BASIN NAME: BASPA
BASIN AREA: 1096 sq km

S No	Date	Snow cover (sq km)	Snow cover (\%)	S No	Date	Snow cover (sq km)	Snow cover (\%)
October 2014							
1.	05 Oct 2014	342	32	2.	25 Oct2014	639	58
November 2014							
3.	05 Nov 2014	379	35				
December 2014							
4	15 Dec 2014	1042	95				
January 2015							
5	05 Jan 2015	989	90				
February 2015							
6.	05 Feb 2015	1064	99				
March 2015							
7.	05 Mar 2015	1083	85				
April 2015							
8.	15 Apr 2015	979	89	9.	25 Apr 2015	877	80
May 2015							
10.	05 May 2015	892	81	11.	25 May 2015	709	65
June 2015							
12.	05 June 2015	504	46				

SNOW ACCUMULATION AND ABLATION CURVE

BASPA SUB-BASIN (5 DAILY WITHOUT CLOUDY DATA)

SNOW ACCUMULATION AND ABLATION CURVE

SNOW COVER MAP

10 DALLY SNOW COVER MAP: BASPA BASIN

DATA USED

01 Feb 2015
04 Feb 2015

DATA USED
data not avallable

DATA USED

DATA NOT AVALABLE

SNOW

$0510 \quad 20 \quad 30 \quad 40$
BClometers

DATA USED
04 March 2015
06 March 2015

DATA USED
data not avallable

DATA USED
data not avallable

JIWA SUB-BASIN

AREAL EXTENT OF SNOW (5 DAILY)

BASIN NAME: JIWA
BASIN AREA: 1445 sq. km

S. No	Date	Snow cover (sq. km)	Snow cover (\%)	S. No	Date	Snow cover (sq. km)	Snow cover (\%)
October 2014							
1.	01 Oct 2014	73 ©	5	3	30 Oct 2014	152	10
2	04 Oct 2014	82 ©	6				
November 2014							
4.	02 Nov 2014	170	12				
December 2014							
5	07 Dec 2014	44 ©	3				
6	05 Jan 2015	603	42	8	24 Jan 2015	649	45
7	10 Jan 2015	514	36				
March 2015							
9.	04Mar 2015	948	66	11.	09 Mar 2015	1082	75
10.	06 Mar 2015	812	56				
April 2015							
12.	04 Apr 2015	621	43	15.	12 Apr 2015	466 ©	32
13.	06 Apr 2015	568	39	16.	26 Apr 2015	476	33
14.	11 Apr 2015	564	39				
May 2015							
17.	03 May2015	481	33		24 May 2015	295	20
18.	06 May 2015	385	27				
June 2015							
20.	10 June 2015	1039 ©	72	22.	29 June 2015	208	14
21.	11 June 2015	369	26				

AREAL EXTENT OF SNOW (10 DAILY)

BASIN NAME: JIWA
BASIN AREA: 1445 sq. km

S. No	Date	Snow cover (sq. km)	Snow cover (\%)	S. No	Date	Snow cover (sq. km)	Snow cover (\%)
October 2014							
1.	25 Oct 2014	152	10				
November 2014							
2.	02 Nov 2014	170	12				
January 2015							
3.	05 Jan 2015	603	42	4.	25 Jan 2015	649	45
March 2015							
5.	05 Mar 2015	1082	75				
April 2015							
6	05 Apr 2015	624	43	6	15 Apr 2015	563	39
7	25 Apr 2015	476	33				
May 2015							
8	05 May 2015	481	33	9	25 May 2015	295	20
June 2015							
10	15 June 2015	369	26				

SNOW ACCUMULATION AND ABLATION CURVE

JIWA SUB-BASIN (5 DAILY WITHOUT CLOUDY DATA)

SNOW ACCUMULATION AND ABLATION CURVE

SNOW COUER MAP

PARBATI SUB-BASIIN

AREAL EXTENT OF SNOW (5 DAILY)

BASIN NAME: PARBATI
BASIN AREA: $\mathbf{1 7 7 3} \mathbf{~ s q ~ k m}$

S No	Date	Snow cover (sq km)	Snow cover (\%)	S No	Date	Snow cover (sq km)	Snow cover (\%)
October 2014							
1.	01 Oct 2014	321 ©	18	3.	04 Oct 2014	409 ©	23
2.	02 Oct 2014	334	19	4.	30 Oct 2014	691	39
November 2014							
5.	02 Nov 2014	710	40				
December 2014							
6.	07 Dec 2014	331	19	7.	20 Dec 2014	1461	82
January 2015							
8.	01 Jan 2015	1243	70	10.	10 Jan 2015	1278	72
9.	05 Jan 2015	1324	75	11	24 Jan 2015	1240	70
February 2015							
March 2015							
12.	06 Mar 2015	1553	88	13	09 Mar 2015	1629	92
April 2015							
14.	04 April 2015	1434	81	17	12 April 2015	1331	75
15.	06 April 2015	1317	74	18	26 April 2015	12444	70
16.	11 April 2015	1368	77				
May 2015							
19.	03 May 2015	1245	70	21.	24May 2015	949 ©	54
20.	06 May 2015	1156	65				
June 2015							
22.	10 June 2015	1336 ©	75	24.	20 June 2015	643 ©	36
23.	11 June 2015	1177	66	25.	29 June 2015	845	48

AREAL EXTENT OF SNOW (10 DAILY)

BASIN NAME: PARBATI
BASIN AREA: $\mathbf{1 7 7 3} \mathbf{~ s q ~ k m}$

S No	Date	Snow cover (sq km)	Snow cover (\%)	S No	Date	Snow cover (sq km)	Snow cover (\%)
October 2014							
1	05 Oct 2014	334	19	2.	25 Oct 2014	691	39
November 2014							
3.	05 Nov 2014	710	40				
December 2014							
4.	05 Dec 2014	331	19	5.	15 Dec 2014	1461	82
January 2015							
6.	05 Jan 2015	1324	75	7	25 Jan 2015	1240	70
February 2015							
March 2015							
8.	05 Mar 2015	1628	92				
April 2015							
9	05 Apr 2015	1437	81	10	15 Apr 2015	1368	77
11	25 Apr 2015	1244	70				
May 2015							
12	05 May 2015	1245	70				
June 2015							
13	15 June 2015	1170	66	14	25 June 2015	833	47

SNOW ACCUMULATION AND ABLATION CURVE

SNOW ACCUMULATION AND ABLATION CURVE

SNOW COUER MAP

DATA USED
07 Dec 2014

DATA USED
20 Dec 2014

DATA USED
DATA NOT AVALLABLE

SNOW

| $0510 \quad 20 \quad 30 \quad 40$ |
| :--- | :--- | :--- | :--- |

DATA NOT AVALLABLE

15June 2015

DATA NOT AVALLABLE
snow

29 June 2015
$04.59 \quad 18 \quad 27 \quad 36$

| $04.59 \quad 18 \quad 27 \quad 36$ |
| :--- | :--- | :--- |

Kilometers

BEAS SUB-BASIN

AREAL EXTENT OF SNOW (5 DAILY)

BASIN NAME: BEAS
BASIN AREA: 1132 sq km

S No	Date	Snow cover (sq km)	Snow cover (\%)	S No	Date	Snow cover (sq km)	Snow cover (\%)
October 2014							
1.	01 Oct 2014	24	2	3	04 Oct2014	29 ©	3
2.	02 Oct 2014	35	3	4	30 Oct 2014	143	13
November 2014							
5.	02 Nov 2014	144	13				
December 2014							
6.	01 Dec 2014	146	13	8	20 Dec 2014	894	79
7.	07 Dec 2014	43	4				
January 2015							
9.	01 Jan 2015	531	47	11.	10 Jan 2015	614	54
10.	05Jan 2015	698	62	12.	24 Jan 2015	514	45
March 2015							
13.	06 Mar 2015	911	80	14.	09 Mar 2015	1023	90
April 2015							
15.	04 April 2015	752	66	17.	12 April 2015	571	50
16.	11 April 2015	679	60				
May 2015							
18.	03 May 2015	484	43	20.	24 May 2015	250	22
19.	06 May 2015	405	36				
June 2015							
21.	10 June 2015	779	69	22	11 June 2015	$166 \bigcirc$	15
				23	20 June 2015	208	18
©: cloudy							

AREAL EXTENT OF SNOW (10 DAILY)

BASIN NAME: BEAS
BASIN AREA: 1132 sq km

S No	Date	Snow cover (sq km)	Snow cover (\%)	S No	Date	Snow cover (sq km)	Snow cover (\%)
October 2014							
1.	25 Oct 2014	143	13				
November 2014							
2.	05 Nov 2014	146	13				
December 2014							
3	05 Dec 2014	146	13	4	15 Dec 2014	894	79
January 2015							
5	05 Jan 2015	698	62	6	15 Jan 2015	614	54
7	25 Jan 2015	555	49				
February 2015							
8.	05 Feb 2015						
March 2015							
9.	05 Mar 2015	1023	91				
April 2015							
10.	05 Apr 2015	752	66	11.	15 Apr 2015	678	60
	25 Apr 2015	623	55				
May 2015							
12.	05 May 2015	483	43	13.	15 May 2015		
14.	25 May 2015						
June 2015							

SNOW ACCUMULATION AND ABLATION CURVE

BEAS SUB-BASIN (5 DAILY WITHOUT CLOUDY DATA)

SNOW ACCUMULATION AND ABLATION CURVE

SNOW COUER MAP

10 DALIY SNOW COVER MAP: BEAS BASIN

DATA USED
01 Oct 2014
02 Oct 2014

DATA USED
30 Oct 2014

DATA USED

01 Dec 2014
07 Dec 2014

DATA USED
20 Dec 2014

DATA USED

DATA NOT AVALABLE

SNOW

10 DALIY SNOW COVER MAP: BEAS BASIN

DATA USED

01 Jan 2015
05 Jan 2015 10 Jan 2015

DATA USED

DATA NOT AVALABLE

DATA USED
24 Jan 2015

SNOW

0	5	10	20	30	40
Kilometers					

10 DALI SNOW COVER MAP: BEAS BASIN

DATA USED

02 April 2015
04 April 2015
06 April 2015
07April 2015

DATA USED
11 April 2015
12 April 2015

DATA USED
26 April 2015

SNOW

DATA USED
03 May 2015
06 May 2015

DATA USED
DATA NOT AVALLABLE

DATA USED
24 May 2015

SNOW
B. $26.5 \quad 1319.5 \quad 26$ B Klometers

10 DAILY SNOW COVER MAP: BEAS BASIN

DATA USED
03 June 2014
04 June 2014
06 June 2014

DATA USED
11 June 2014
13 June 2014
16 June 2014

DATA USED
28 June 2014

