This publication deals with the updated database and status of wetlands, compiled in Atlas format. Increasing concern about how our wetlands are being influenced has led to formulation of a project entitled “National Wetland Inventory and Assessment (NWIA)” to create an updated database of the wetlands of India. The wetlands are categorised under 19 classes and mapped using satellite remote sensing data from Indian Remote Sensing Satellite: IRS P6- LISS III sensor. The results are organised at 1: 50,000 scales at district, state and topographic map sheet (Survey of India reference) level using Geographic Information System (GIS). This publication is a part of this national work and deals with the wetland status of a particular State/Union Territory of India, through text, statistical tables, satellite images, maps and ground photographs.

The atlas comprises wetland information arranged into nine sections. How the NWIA project work has been executed highlighted in the first six sections viz: Introduction, NWIA project, Study area, Data used, Methodology, and Accuracy. This is the first time that high resolution digital remote sensing data has been used to map and decipher the status of the wetlands at national scale. The methodology highlights how the four spectral bands of LISS III data (green, red, near infra red and short wave infra red) have been used to derive various indices and decipher information regarding water spread, turbidity and aquatic vegetation. Since, the aim was to generate a GIS compatible database, details of the standards of database are also highlighted in the methodology.

The results and finding are organised in three sections; viz: Maps and Statistics, Major wetland types, and Important Wetlands of the area. The Maps and Statistics are shown for state and district level. It gives details of what type of wetlands exists in the area, how many numbers in each type, their area estimates in hectare. Since, the hydrology of wetlands are influenced by monsoon performance, extent of water spread and their turbidity (qualitative) in wet and dry season (post-monsoon and pre-monsoon period) are also given. Similarly the status of aquatic vegetation (mainly floating and emergent types) in two seasons is also accounted for. Status of small wetlands are also accounted as numbers and depicted in maps as points. Wetland map also show important ancillary information like roads/rail, relevant habitations. False Colour Composite (FCC) of the satellite image used (any one season) is shown along with the derived wetland map to give a feeling of manifestation of wetlands in remote sensing data and synoptic view of the area. The status of some of the important wetlands like Ramsar sites, National Parks are shown with recent field photographs.

For further details contact:

Director,
Space Applications Centre, ISRO,
Ambawadi Vistar (P.O.)
Ahmedabad – 380 015
director@sac.isro.gov.in
NATIONAL WETLAND ATLAS

Lakshadweep

Sponsored by
Ministry of Environment and Forests, Government of India

As a part of the project on National Wetland Inventory and Assessment (NWIA)

Space Applications Centre (ISRO), Ahmedabad

July 2009
It gives me great pleasure to introduce this Atlas, the latest in a series, prepared by Space Applications Centre, Ahmedabad in connection with the National Wetland Inventory and Assessment Project.

This Atlas maps and catalogues information on Wetlands across India using the latest in satellite imaging, one of the first of its kind. Wetlands are areas of land critical ecological significance that support a large variety of plant and animal species adapted to fluctuating water levels. Their identification and protection becomes very important.

Utility-wise, wetlands directly and indirectly support millions of people in providing services such as food, fiber and raw materials. They play important roles in storm and flood control, in supply of clean water, along with other educational and recreational benefits. Despite these benefits, wetlands are the first target of human interference and are among the most threatened of all natural resources. Around 50% of the earth’s wetlands are estimated to already have disappeared worldwide over the last hundred years through conversion to industrial, agricultural and residential purposes. Even in current scenario, when the ecosystem services provided by wetlands are better understood - degradation and conversion of wetlands continues.

Aware of their importance, the Government of India has formulated several policies and plans for the conservation and preservation of these crucial ecosystems. Realising the need of an updated geospatial data base of these natural resources as the pre-requisite for management and conservation planning, National Wetland Inventory and Assessment (NWIA) project was formulated as a joint vision of Ministry of Environment & Forestry, Govt. India, and Space Applications Centre (ISRO). I am told that the latest remote sensing data from Indian Remote Sensing satellite (IRS P6) have been used to map the wetlands. The present atlas is part of this project and highlights the results of the study state in terms of statistics of various types of wetlands, extent of water, aquatic vegetation and turbidity in pre and post monsoon period. I also note that special efforts are made to provide detailed information of important wetlands like Ramsar sites, National Parks etc.

I am certain that this Atlas will raise the bar in developing such database and will be of great use for researchers, planners, policy makers, and also members of the general public.
Wetlands defined as areas of land that are either temporarily or permanently covered by water exhibit enormous diversity according to their genesis, geographical location, water regime and chemistry. Wetlands are one of the most productive ecosystems and play crucial role in hydrological cycle. Utility wise, wetlands directly and indirectly support millions of people in providing services such as storm and flood control, clean water supply, food, fiber and raw materials, scenic beauty, educational and recreational benefits. The Millennium Ecosystem Assessment estimates conservatively that wetlands cover seven percent of the earth’s surface and deliver 45% of the world’s natural productivity and ecosystem services. However, the very existence of these unique resources is under threat due to developmental activities, and population pressure. This calls for a long term planning for preservation and conservation of these resources. An updated and accurate database that will support research and decision is the first step towards this. Use of advanced techniques like Satellite remote sensing, Geographic Information System (GIS) is now essential for accurate and timely spatial database of large areas. Space Applications Centre (ISRO) took up this challenging task under the project “NWIA” (National Wetland Inventory and Assessment) sponsored by Ministry of Environment & Forests. To account for numerous small yet important wetlands found in the country, mapping at 1:50,000 scales has been taken up. Two date IRS LISS III data acquired during pre and post monsoon season are used for inventory to account for wet and dry season hydrology of wetlands. The map outputs include the status of water spread, aquatic vegetation and turbidity. Ancillary layers like road/rail, habitations are also created. Very small wetlands below the mappable unit are also identified and shown points. The results are complied as Atlases of wetlands for states/Union Territories of India. This Atlas highlights results for a particular state/UT and hopes to improve our understanding of the dynamics and distribution of wetlands and their status in the area.

I congratulate the team for bringing out this informative atlas and sincerely hope that this will serve as a useful source of information to researchers, planners and general public.

January 25, 2010

(Ranganath R. Navalgund)
The project “National Wetland Inventory & Assessment (NWIA)”, is sponsored by Ministry of Environment & Forestry (MoEF), Govt. of India and executed by Space Applications Centre, ISRO, Ahmedabad. We are grateful to Dr. Ranganath R. Navaligund, Director, Space Applications Centre, for his encouragement to take up this challenging task and formulation of the project team for timely implementation. Earnest thanks are also due to Dr. Jai Singh Parihar, Dy. Director, Remote Sensing Applications Area, Space Applications Centre, for providing overall guidance and support to the project. The present Atlas for the state is a part of the “National Wetland Atlas.

This project has benefited from the wisdom of many people. It is a pleasure to acknowledge the contributions made by the wetland experts especially to Prof. C.K. Varshney, Former Dean, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, Prof. A.R. Yousuf, The University of Kashmir, Srinagar, Prof. Pradeep Shrivastava, Head, Wetland Research Centre, Barakatullah University, Bhopal, Dr. Prikshit Gautam, Director, WWF-India, Dr. S. Narendra Prasad, Salim Ali Centre for Ornithology and Nature, Coimbatore and Dr. R.K. Suri, Additional Director, Ministry of Environment and Forests, Govt. of India, New Delhi, to finalise the “Wetland Classification System” followed in this project by their active participation in the Peer Review meeting. We are thankful to the database experts from ISRO who participated in the peer Review meeting to finalise the hierarchical classification system.

We acknowledge the support received from Dr P S Roy, Dy Director, NRSC and Dr S Sudhakar, Head, LRD, NRSC in terms of valuable suggestions and providing the geo-referenced image of NRC-LU&LC project for use as master image in this project.

We acknowledge the positive role played by 16th SC-B (Standing Committee on Bioresources and Environment) of NNRMS (National Natural Resources Management System) meeting in formulating this project. We are extremely thankful to the members of the “Steering Committee” of the project, under the chairmanship of Dr E J James, Director — Water Institute, Karunya University, for their periodical review, critical comments and appreciation of the efforts by the project team. We are thankful to SC-B under the chairmanship of Secretary, MoEF, for periodic review of the progress of the project and guidance towards timely completion of the work. We acknowledge the valuable contributions made by Dr J K Garg, the then scientist of SAC for his active role in formulation of this project, co-authoring the procedure manual document.

We are grateful to Dr G V Subramanyam, Adviser, MoEF, Dr Jag Ram, Director, MoEF for their very active and positive role for implementation of the project. We are thankful to Dr Harendra Khanwal, MoEF for his support for budget related issues. We are thankful to the “Technical Review” team of SAC for critical comments and suggestion of the Atlas.

ACKNOWLEDGEMENTS
PROJECT TEAM

Project Director: Dr. (Mrs.) Sushma Panigrahy

Space Applications Centre, ISRO, Ahmedabad

Shri T. V. R. Murthy
Shri N. M. Suthar
Shri J. G. Patel
Dr T. S. Singh
CONTENTS

1.0 INTRODUCTION
 1.1 Wetlands
 1.2 Mapping and Geospatial Techniques
 1.3 Wetland Inventory of India

2.0 NATIONAL WETLAND INVENTORY AND ASSESSMENT (NWIA) PROJECT
 2.1 Wetland Classification System
 2.2 GIS Database Contents

3.0 STUDY AREA

4.0 DATA USED

5.0 METHODOLOGY
 5.1 Creation of Spatial Framework
 5.2 Geo-referencing of Satellite Data
 5.3 Mapping of Wetlands
 5.4 Conversion of Raster into a Vector Layer
 5.5 Generation of Reference Layers
 5.6 Coding and Attribute Scheme
 5.7 Map Composition and Output

6.0 ACCURACY ASSESSMENT

7.0 WETLANDS OF LAKSHADWEEP: MAPS AND STATISTICS

8.0 MAJOR WETLAND TYPES OF LAKSHADWEEP

9.0 SEGREGATED ISLAND(s)-WISE WETLAND MAPS

References

Annexure–I: Definitions of wetland categories used in the project.
Annexure–II: Details of district information followed in the atlas

List of Figures

Figure 1: Spectral Signature of various targets
Figure 2: Various features as they appear in three spectral bands and in a typical three band FCC.
Figure 3: Location map
Figure 4: Spatial framework of Lakshadweep
Figure 5: IRS P6 LISS-III coverage of Lakshadweep
Figure 6: Part of Lakshadweep as seen on IRS LISS-IV FCC (post-monsoon: 2006 and pre-monsoon: 2007)
Figure 7: Flow chart of the methodology used
Figure 8: Steps in the extraction of wetland structural components
Figure 9: Various combinations of the indices/spectral bands used to identify wetland types
Figure 10: Type-wise wetland distribution in Lakshadweep
Figure 11: Wetland map of Lakshadweep based on P6 LISS-IV images of post-monsoon (2006) and pre-monsoon (2007)

List of Tables

Table 1: Wetland Classification System and coding
Table 2: Satellite data used
Table 3: Qualitative turbidity based on mean and standard deviation observed in the NDTI images.
Table 4: Area estimates of wetlands in Lakshadweep
1.0 INTRODUCTION

It is increasingly realized that the planet earth is facing grave environmental problems with fast depleting natural resources and threatening the very existence of most of the ecosystems. Serious concerns are voiced among scientists, planners, sociologists, politicians, and economists to conserve and preserve the natural resources of the world. One of the constraints most frequently faced for decision making is lack of scientific data of our natural resources. Often the data are sparse or unauthentic, rarely in the form of geospatial database (map), thus open to challenges. Hence, the current emphasis of every country is to have an appropriate geospatial database of natural resources based on unambiguous scientific methods. The wetland atlas of Lakshadweep Islands, which is part of the National Wetland Atlas of India, is an attempt in this direction.

1.1 Wetlands

Wetlands are one of the crucial natural resources. Wetlands are areas of land that are either temporarily or permanently covered by water. This means that a wetland is neither truly aquatic nor terrestrial; it is possible that wetlands can be both at the same time depending on seasonal variability. Thus, wetlands exhibit enormous diversity according to their genesis, geographical location, water regime and chemistry, dominant plants and soil or sediment characteristics. Because of their transitional nature, the boundaries of wetlands are often difficult to define. Wetlands do, however, share a few attributes common to all forms. Of these, hydrological structure (the dynamics of water supply, throughput, storage and loss) is most fundamental to the nature of a wetland system. It is the presence of water for a significant period of time which is principally responsible for the development of a wetland. One of the first widely used classification systems, devised by Cowardin et al, 1979, was associated to its hydrological, ecological and geological aspects, such as: marine (coastal wetlands including rock shores and coral reefs, estuarine (including deltas, tidal marshes, and mangrove swamps), lacustrine (lakes), riverine (along rivers and streams), palustrine (‘marshy’- marshes, swamps and bogs). Given these characteristics, wetlands support a large variety of plant and animal species adapted to fluctuating water levels, making the wetlands of critical ecological significance. Utility wise, wetlands directly and indirectly support millions of people in providing services such as food, fiber and raw materials, storm and flood control, clean water supply, scenic beauty and educational and recreational benefits. The Millennium Ecosystem Assessment estimates conservatively that wetlands cover seven percent of the earth’s surface and deliver 45% of the world’s natural productivity and ecosystem services of which the benefits are estimated at $20 trillion a year (Source : www.MAweb.org). The Millennium Assessment (MA) uses the following typology to categorise ecosystem services:

- Provisioning services: The resources or products provided by ecosystems, such as food, raw materials (wood), genetic resources, medicinal resources, ornamental resources (skin, shells, flowers).
- Regulating services: Ecosystems maintain the essential ecological processes and life support systems, like gas and climate regulation, water supply and regulation, waste treatment, pollination, etc.
- Cultural and Amenity services: Ecosystems are a source of inspiration to human culture and education throughout recreation, cultural, artistic, spiritual and historic information, Science and education.
- Supporting services: Ecosystems provide habitat for flora and fauna in order to maintain biological and genetic diversity.

Despite these benefits, wetlands are the first target of human interference and are among the most threatened of all natural resources. Around 50% of the earth’s wetland area is estimated to already have disappeared over the last hundred years through conversion to industrial, agricultural and residential developments. Even in current scenario, when the ecosystem services provided by wetlands are better understood - degradation and conversion of wetlands continues. This is largely due to the fact that the ‘full value’ of ecosystem functions is often ignored in policy-making, plans and corporate evaluations of development projects.

1.2 Mapping and Geospatial Technique

To conserve and manage wetland resources, it is important to have inventory of wetlands and their catchments. The ability to store and analyse the data is essential. Digital maps are very powerful tools to achieve this. Maps relate the feature to any given geographical location has a strong visual impact. Maps, thus essential for monitoring and quantifying change over time scale, assist in decision making.
The technique used in the preparation of map started with ground survey. The Survey of India (SOI) topographical maps are the earliest true maps of India showing various land use/cover classes including wetlands. Recent years have seen advances in mapping technique to prepare maps with much more information. Of particular importance is the remote sensing and geographic information system (GIS) technique. Remote sensing is now recognised as an essential tool for viewing, analyzing, characterizing, and making decisions about land, water and atmospheric components.

From a general perspective, remote sensing is the science of acquiring and analyzing information about objects or phenomena from a distance (Jensen, 1986; Lillesand and Keifer, 1987). Today, satellite remote sensing can be defined as the use of satellite borne sensors to observe, measure, and record the electromagnetic radiation (EMR) reflected or emitted by the earth and its environment for subsequent analysis and extraction of information. EMR sensors includes visible light, near-, mid- and far-infrared (thermal), microwave, and long-wave radio energy. The capability of multiple sources of information is unique to remote sensing. Of specific advantage is the spectral, temporal, and spatial resolution. Spectral resolution refers to the width or range of each spectral band being recorded. Since each target affects different wavelengths of incident energy differently, they are absorbed, reflected or transmitted in different proportions. Currently, there are many land resource remote sensing satellites that have sensors operating in the green, red, near infrared and short wave Infra red regions of the electromagnetic spectrum giving a definite spectral signature of various targets due to difference in radiation absorption and reflectance of targets. These sensors are of common use for land cover studies, including wetlands. Figure 1 shows typical spectral signature of few targets from green to SWIR region. Converted to image, in a typical false colour composite (FCC) created using NIR, red and green bands assigned as red, green and blue colour, the features become very distinct as shown in Figure 2. In FCC, the vegetation thus appears invariably red (due to high reflection in NIR from green leaves).

![Figure 1: Spectral Signature of various targets](image)

Since the early 1960s, several satellites with suitable sensors have been launched into orbit to observe and monitor the earth and its environment. Most early satellite sensors acquired data for meteorological purposes. The advent of earth resources satellite sensors (those with a primary objective of mapping and monitoring land cover) occurred, when the first Landsat satellite was launched in July 1972. Currently, more than a dozen orbiting satellites of various types provide data crucial to improving our knowledge of the earth's atmosphere, oceans, ice and snow, and land. Of particular interest to India is the indigenous series of satellites called Indian Remote Sensing (IRS) satellites. Since the launch of the first satellite IRS 1A in 1987, India has now a number of satellites providing data in multi-spectral bands with different spatial resolution. IRS P6/RESOURCESAT 1 is the current generation satellite that provides multi-spectral images in spatial resolution of 5.8 m (LISS IV), 23.5 m (LISS III) and 56m (AWiFS). Over the past few decades, Indian remote sensing data has been successfully used in various fields of natural resources (Navalgund et al, 2002).

Development of technologies like Geographic Information System (GIS) has enhanced the use of RS data to obtain accurate geospatial database. GIS specialises in handling related, spatially referenced data, combining mapped information with other data and acts as analytical tool for research and decision making. During the past few decades, technological advances in the field of satellite remote sensing (RS) sensors, computerized mapping techniques, global positioning system (GPS) and geographic information system (GIS) has enhanced the ability to capture more detailed and timely information about the natural resources at various scales catering to local, regional, national and global level study.
Figure 2: Various features as they appear in three spectral bands and in a typical three band FCC of LISS-IV image - Lakshadweep
1.3 Wetland Inventory of India

India with its large geographical spread supports large and diverse wetland classes, some of which are unique. Wetlands, variously estimated to be occupying 1-5% per cent of geographical area of the country, support about a fifth of the known biodiversity. Like any other place in the world, there is a looming threat to the aquatic biodiversity of the Indian wetlands as they are often under a regime of unsustainable human pressures. Sustainable management of these assets therefore is highly relevant. Realising this, Govt. of India has initiated many appropriate steps in terms of policies, programmes and plans for the preservation and conservation of these ecosystems. India is a signatory to the Ramsar Convention for management of wetland, for conserving their biodiversity and wise use extending its scope to a wide variety of habitats, including rivers and lakes, coastal lagoons, mangroves, peatlands, coral reefs, and numerous human-made wetland, such as fish and shrimp ponds, farm ponds, irrigated agricultural land, salt pans reservoirs, gravel pits, sewage farms, and canals. The Ministry of Environment and Forests has identified a number of wetlands for conservation and management under the National Wetland Conservation Programme and some financial assistance is being provided to State Governments for various conservation activities through approval of the Management Action Plans. The need to have an updated map database of wetlands that will support such actions has long been realized.

Mapping requires a standard classification system. Though there are many classification systems for wetlands in the world, the Ramsar classification system is the most preferred one. The 1971 Ramsar Convention on Wetlands of International Importance especially as Waterfowl Habitat is the oldest conservation convention. It owes its name to its place of adoption in Iran. It came into being due to serious decline in populations of waterfowl (mainly ducks) and conservation of habitats of migratory waterfowl. Convention provides framework for the conservation and ‘wise use’ of wetland biomes. Ramsar convention is the first modern global intergovernmental treaty on conservation and wise use of natural resources (Ramsar Convention, 2007 www.ramsar.org). Ramsar convention entered into force in 1975. Under the text of the Convention (Article 1.1) wetlands are defined as:

“areas of marsh, fen, peatland or water, whether natural or artificial, permanent or temporary, with water that is static or flowing, fresh, brackish or salt, including areas of marine water the depth of which at low tide does not exceed six meters”.

In addition, the Convention (Article 2.1) provides that wetlands:

“may incorporate riparian and coastal zones adjacent to the wetlands, and islands or bodies of marine water deeper than six meters at low tide lying within the wetlands”.

The first scientific mapping of wetlands of India was carried out during 1992-93 by Space Applications Centre (ISRO), Ahmedabad, at the behest of the Ministry of Environment and Forests (MoEF), Govt. of India using remote sensing data from Indian Remote Sensing (IRS) satellite. The mapping was done at 1:250,000 scale using IRS 1A LISS-I/II data of 1992-93 timeframe under the Nation-wide Wetland Mapping Project. Since, no suitable wetland classification existed for comprehensive inventory of wetlands in the country at that time; the project used a classification system based on Ramsar Convention definition of wetlands. The classification considers all parts of a water mass including its ecotonal area as wetland. In addition, fish and shrimp ponds, salt pans, reservoirs, gravel pits were also included as wetlands. This inventory put the wetland extent (inland as well as coastal) at about 8.26 million ha. (Garg et al, 1998). These estimates (24 categories) do not include rice/paddy fields, rivers, canals and irrigation channels.

Further updating of wetland maps of India was carried out by SAC using IRS P6/Resourcesat AWIFS data of 2004-05 at 1:250000 scale. In recent years, a conservation atlas has been brought out by Salim Ali Centre for Ornithology and Natural History (SACON, 2004), which provide basic information required by stakeholders in both wetland habitat and species conservation. Space Applications Centre has carried out many pilot projects for development of GIS based wetland information system (Patel et al, 2003) and Lake Information system (Singh et al, 2003).

2.0 NATIONAL WETLAND INVENTORY AND ASSESSMENT (NWIA) PROJECT

Realising the importance of many small wetlands that dot the Indian landscape, it has been unanimously felt that inventory of the wetlands at 1:50,000 scale is essential. The task seemed challenging in view of the vast geographic area of our country enriched with diverse wetland classes. Space Applications Centre with its experience in use of RS and GIS in the field of wetland studies, took up this challenging task. This is further strengthened by the fact that guidelines to create geospatial framework, codification scheme,
data base structure etc. for natural resources survey has already been well established by the initiative of ISRO under various national level mapping projects. With this strength, the National Wetland Inventory and Assessment (NWIA) project was formulated by SAC, which was approved and funded by MoEF.

The main objectives of the project are:

- To map the wetlands on 1:50000 scale using two date (pre and post monsoon) IRS LISS III digital data following a standard wetland classification system.
- Integration of ancillary theme layers (road, rail, settlements, drainage, administrative boundaries)
- Creation of a seamless database of the states and country in GIS environment.
- Preparation of State-wise wetland atlases.

The project was initiated during 2007. The first task was to have a classification system that can be used by different types of users while amenable to database. An expert/peer group was formed and the peer review was held at SAC in June 2007 where wetland experts and database experts participated and finalized the classification system. It was agreed to follow the classification system that has been used for the earlier project of 1:250,000 scale, with slight modification. Modified National Wetland Classification system for wetland delineation and mapping comprise 19 wetland classes which are organized under a Level III hierarchical system. The definition of each wetland class and its interpretation method was finalized. The technical/procedure manual was prepared as the standard guideline for the project execution across the country (Garg and Patel, 2007). The present atlas is part of the national level data base and deals with the state of Union Territory of Lakshadweep.

2.1 Wetland Classification System

In the present project, Modified National Wetland Classification system is used for wetland delineation and mapping comprising 19 wetland classes which are organized under a Level III hierarchical system (Table 1). Level one has two classes: inland and coastal, these are further bifurcated into two categories as: natural and man-made under which the 19 wetland classes are suitably placed. Two-date data pertaining to pre-monsoon and post-monsoon was used to confirm the classes. Wetlands put to agriculture use in any of the two dates are not considered as wetland class. Definitions of wetland categories used in the project is given in Annexure-I.

2.2 GIS Database Contents

The National Spatial Framework (NSF) has been used as the spatial framework to create the database (Anon. 2005a). The database design and creation standard suggested by NRDB/NNRMS guidelines is followed. Feature codification scheme for every input element has been worked out keeping in view the nationwide administrative as well as natural hierarchy (State-district-within the feature class for each of the theme. All data elements are given a unique name, which are self explanatory with short forms.

Following wetland layers are generated for each inland wetland:

- Wetland extent: As wetlands encompass open water, aquatic vegetation (submerged, floating and emergent), the wetland boundary should ideally include all these. Satellite image gives a clear signature of the wetland extent from the imprint of water spread over the years.
- Water spread: There are two layers representing post-monsoon and pre-monsoon water spread during the year of data acquisition.
- Aquatic vegetation spread: The presence of vegetation in wetlands provides information about its trophic condition. As is known, aquatic vegetation is of four types, viz. benthic, submerged, floating and emergent. It is possible to delineate last two types of vegetation using optical remote sensing data. A qualitative layer pertaining to presence of vegetation is generated for each season (as manifested on pre-monsoon and post-monsoon imagery).
- Turbidity of open water: A layer pertaining to a qualitative turbidity rating is generated. Three qualitative turbidity ratings (low, medium and high) is followed for pre- and post-monsoon turbidity of lakes, reservoirs, barrages and other large wetlands.
- Small wetlands (smaller than minimum mappable unit: < 2.25 ha) are mapped as point features.
- Base layers like major road network, railway, settlements, and surface drainage are created (either from the current image or taken from other project database).

In the case of coastal wetlands only wetland extent is given.

Table 1: Wetland Classification System and coding

<table>
<thead>
<tr>
<th>WetCode</th>
<th>Level I</th>
<th>Level II</th>
<th>Level III</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>Inland Wetlands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1100</td>
<td>Natural Wetlands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1101</td>
<td>Lakes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1102</td>
<td>Ox-Bow Lakes/ Cut-Off Meanders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1103</td>
<td>High altitude Wetlands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1104</td>
<td>Riverine Wetlands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1105</td>
<td>Waterlogged</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1106</td>
<td>River/stream</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1200</td>
<td>Man-made Wetlands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1201</td>
<td>Reservoirs/ Barrages</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1202</td>
<td>Tanks/Ponds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1203</td>
<td>Waterlogged</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1204</td>
<td>Salt pans</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>Coastal Wetlands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2100</td>
<td>Natural Wetlands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2101</td>
<td>Lagoons</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2102</td>
<td>Creeks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2103</td>
<td>Sand/Beach</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2104</td>
<td>Intertidal mud flats</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2105</td>
<td>Salt Marsh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2106</td>
<td>Mangroves</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2107</td>
<td>Coral Reefs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2200</td>
<td>Man-made Wetlands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2201</td>
<td>Salt pans</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2202</td>
<td>Aquaculture ponds</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Wetland type code

3.0 STUDY AREA

The union Territory was formed in 1956 and named as Lakshadweep (earlier name: Laccadives) in 1973. The Lakshadweep lies about 220 to 440 km from the coastal city of Cochin in Kerala between 8° and 13° Latitude and 71° and 74° Longitude (Figure 3). Even though the land area is extremely small, Lakshadweep is one of the largest territories when lagoon area (4200km²), territorial water area (20000km²) and economic zone (about 7 lakh km²) put together. The tiniest Union Territory of India, Lakshadweep is an archipelago consisting of 12 atolls, 3 reefs and 5 submerged banks. Only ten islands are inhabited namely; Androth, Amini, Agatti, Bitra, Chetalat, Kadmat, Kalpeni, Kavaratti (Head quarters),
Kiltan and Minicoy. Bitra is the smallest (0.1 km2). The geographical area of the islands is 32 km2 and as per the 2001 census the population is 60,650. The spatial framework for Lakshadweep is covered by twenty-one sheets on 1:50,000 scale SOI topographical maps that form the spatial frame work for mapping (Figure 4).

Flora and Fauna

The flora of the islands includes Banana, Colacasia, Drumstic, Bread-fruit, Jack fruit and wild Almond. Coconut is the only crop of economic importance in Lakshadweep and found in different varieties such as laccadive micro, laccadive ordinary, green dwarf etc.. Two varieties of sea grasses namely; *Thalassia hemprichin* and *Cymodocea isoetifolia* are seen present adjacent to the beaches. They are known to play a preventive role of sea erosion and movement of the beach sediments.

The marine life is quite elaborate which include mollusks like; Honda cone, Tulip shells, Giant tun, Lace murex, capritis murex, pacific scallop, Measled cowry, dwarf olive, Bubble shells and Flame hepet. Most of the fishes of economic importance fall under oceanic belonging to Tunas, Wahoo and sailfish. Of lesser importance are the Manta, barracuda, Marlins and Sword fish. The lagoon fishes are fabulous in their appearance and colours. Some of these are Saddle backed parrot fish (*Thallsoma hebracium*), Blue surgeon fish (*Acanthurus lenconsteron*), Pennant fish (*Aenanthuras gineatus*), Black bat fish (*Platax teria*), Blue rug butterfly fish (*Pomacantus annupares*) and Blue banded snapper (*Lutianus kasmira*). The commonly seen vertebrates are cattle and poultry. Oceanic avifauna generally seen is ‘tharathasi’ (*Sterna fuscata*) and ‘karifetu’ (*Anous stolidus*). Commonly seen birds are Grey Heron, Terns, Curlew, Golden Plover, White-eye and Phillipine Noddy. All these islands have been declared as bird sanctuaries and known as ‘Pitti’.

Corals

Coral reefs, which are the most productive of marine ecosystem, cover an estimated 4200 km2 around Lakshadweep. Almost all the atolls of the archipelago have a northeast-southwest orientation with an island towards the east, a broad, well-developed reef to the west and a lagoon in between, opening to sea through channels (Rashmi and Rajesh, 1992).
4.0 DATA USED

Remote sensing data

IRS P6 LISS IV data was used to map the wetlands. IRS P6 LISS IV provides data in 3 spectral bands; green, red and Near Infra Red (NIR), with 5.8 m spatial resolution and 24 day repeat cycle. The spatial resolution is suitable for 1:50,000 to 25,000 scale mapping. The Union Territory of Lakshadweep is covered in eight IRS LISS III scenes (Figure 5) and each comprising 4 LISS-IV scenes. Ideally, two date data, one acquired during March to May and another during October to December to be used to capture the pre-monsoon and post-monsoon hydrological variability of the wetlands respectively. However, due to non-availability of such ideal cloud-free data certain compromise has been allowed. Nevertheless, data pertained to 2006-07 was used and details are given in table-2. Figure 6 shows the overview of part of the study area as seen in the LISS IV FCC of post-monsoon pre-monsoon data respectively.

Table-2: Satellite data used

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Satellite/Sensor</th>
<th>Path</th>
<th>Row</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>P6-LISS-IV</td>
<td>202</td>
<td>138</td>
<td>12-02-07</td>
</tr>
<tr>
<td>2</td>
<td>P6-LISS-IV</td>
<td>203</td>
<td>087</td>
<td>16-12-06</td>
</tr>
<tr>
<td>3</td>
<td>P6-LISS-IV</td>
<td>204</td>
<td>066</td>
<td>14-01-08</td>
</tr>
<tr>
<td>4</td>
<td>P6-LISS-IV</td>
<td>203</td>
<td>063</td>
<td>11-12-07</td>
</tr>
<tr>
<td>5</td>
<td>P6-LISS-IV</td>
<td>203</td>
<td>064</td>
<td>04-01-08</td>
</tr>
<tr>
<td>6</td>
<td>P6-LISS-IV</td>
<td>202</td>
<td>132</td>
<td>01-07-07</td>
</tr>
<tr>
<td>7</td>
<td>P6-LISS-IV</td>
<td>203</td>
<td>043</td>
<td>09-05-07</td>
</tr>
<tr>
<td>8</td>
<td>P6-LISS-IV</td>
<td>101</td>
<td>166</td>
<td>16-07-06</td>
</tr>
<tr>
<td>9</td>
<td>P6-LISS-IV</td>
<td>201</td>
<td>111</td>
<td>04-05-06</td>
</tr>
<tr>
<td>10</td>
<td>P6-LISS-IV</td>
<td>202</td>
<td>130</td>
<td>03-03-07</td>
</tr>
</tbody>
</table>
Ground truth data

Remote sensing techniques require certain amount of field observation called “ground truth” in order to convert into meaningful information. Such work involves visiting a number of test sites, usually taking the satellite data. The location of the features is recorded using the GPS. The field data collected during various other projects in the area has been utilized. Field photographs are also taken to record the status of wetland.

Other data

Survey of India topographical maps (SOI) were used for reference purpose. Lineage data of National Wetland Maps at 1: 50,000 scale was also used for reference.

5.0 METHODOLOGY

The methodology to create the state level atlas of wetlands is adhered to NWIA technical guidelines and procedure manual (Garg and Patel, 2007). The overview of the steps used is shown in figure 7. Salient features of methodology adopted are

- Generation of spatial framework in GIS environment for database creation and organisation.
- Geo-referencing of satellite data
- Identification of wetland classes as per the classification system given in NWIA Manual and mapping of the classes using a knowledge based digital classification and onscreen interpretation
- Generation of base layers (rail, road network, settlements, drainage, administrative boundaries) from satellite image and ancillary data.
- Mosaicing/edge matching to create district and state level database.
- Coding of the wetlands following the standard classification system and codification as per NWIA manual.
- Preparation of map compositions and generation of statistics
- Outputs on A3 size prints and charts for atlas.

Work was carried out using ERDAS Imagine, Arc/Info and Arcgis softwares.
5.1 Creation of Spatial Framework

This is the most important task as the state forms a part of the national framework and is covered in multiple map sheets. To create NWIA database, NNRMS/NRDB standards is followed and four corners of the 1:50,000 (15' x 15') grids is taken as the tics or registration points to create each map taking master grid as the reference. Spatial framework details are given in NWIA manual (Garg and Patel, 2007). The spatial framework for Lakshadweep (UT) is shown in Figure 4.

5.2 Geo-referencing of Satellite Data

In this step the raw satellite images were converted to specific map projection using geometric correction. This is done using archived geometrically corrected LISS III data (ISRO-NRC-land use / land cover project). Standard image processing software was used for geo-referencing. First one date data was registered with the archived image. The second date data was then registered with the first date data.

5.3 Mapping of Wetlands

The delineation of wetlands through image analysis forms the foundation for deriving all wetland classes and results. Consequently, a great deal of emphasis has been placed on the quality of the image interpretation. In the present study, the mapping of wetlands was done following digital classification and onscreen visual interpretation. Wetlands were identified based on vegetation, visible hydrology and geography. There are various methods for extraction of water information from remote sensing imagery, which according to the number of bands used, are generally divided into two categories, i.e. Single-band and multi-band methods. Single-band method usually involves choosing a band from multi-spectral image to distinguish water from land by subjective threshold values. It may lead to over- or under-estimation of open water area. Multi-band method takes advantage of reflective differences of each band.
Figure 6: Part of Lakshadweep (Agatti Island) as seen on IRS LISS-IV FCC (Post-monsoon: 2006 and Pre-monsoon: 2007)
In this project, five indices known in literature that enhances various wetland characteristics were used (McFeetres, 1986; Xu Hanqiu, 2006; Lacaux et al, 2007; Townshend and Justice, 1986; Tucker and Sellers, 1986) as given below:

i) Normalised Difference Water Index (NDWI) = (Green-NIR) / (Green + NIR)

ii) Modified Normalised Difference Water Index (MNDWI) = (Green-MIR) / (Green + MIR)

iii) Normalised Difference Vegetation Index (NDVI) = (NIR - Red) / (NIR + Red)

iv) Normalised Difference Pond Index (NDPI) = (MIR – Green / MIR + Green)

v) Normalised Difference Turbidity Index (NDTI) = (Red – Green) / (Red + Green)

Due to the absence of SWIR band in LISS-IV image, three indices were generated namely; NDWI, NDVI and NDTI using standard image processing software, and stacked as layers (Figure 8). Various combinations of the indices/spectral bands were used to identify the wetland features as shown in figure 9. As such there are only three wetland categories observed namely; Coral, Lagoon and Sand/beach. The indices were used for various layer extractions:

- **Extraction of wetland extent:**
 NDWI, NDVI and NDTI image was used to extract the wetland boundary through suitable hierarchical thresholds or visually as FCC.

- **Extraction of open water:**
 NDWI was used within the wetland mask to delineate the water and no-water areas. Visually, the FCC of NDWI, NDVI and NDTI on RED, GREEN and BLUE planes allows the discrimination of open water easy.

- **Turbidity information extraction:**
 NDWI image was used to generate qualitative turbidity level (high, moderate and low) based on following steps:

 a) Conversion of post- and pre-monsoon water spread polygons into Area of Interest (AoI).
 b) Grouping of all Aois excluding all non-wetland areas into a single entity.
 c) Generate a signature statistics like minimum, maximum, mean and standard deviations.
 d) Generate a raster turbidity image through a model for AoI only with conditional categorisation.
 e) Convert the raster into vector and update the attributes or edit the water spread layer (copied as turbidity layer) in polygon mode so as to retain all the attributes.
 f) Assign turbidity classes as per the table 3.

Table 3: Qualitative turbidity based on Mean and Standard deviation observed in the NDTI image

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Conditional criteria</th>
<th>Qualitative Turbidity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td><= µ - 1σ</td>
<td>High/Bottom reflectance</td>
</tr>
<tr>
<td>2.</td>
<td>> -1σ to <= +1σ</td>
<td>Moderate</td>
</tr>
<tr>
<td>3.</td>
<td>> +1σ</td>
<td>Low</td>
</tr>
</tbody>
</table>

5.4 **Conversion of Raster into a Vector Layer**

The information on wetland extent, open water extent and turbidity information was converted into vector layers using region growing properties or on-screen digitisation.
5.5 **Generation of Reference Layers**

Base layers like road network, settlements are interpreted from the current image or taken from other project database. The administrative boundaries (district, state) are taken from the known reference data.

5.6 **Coding and Attribute Scheme**

Feature codification scheme for every input element has been worked out keeping in view the nationwide administrative as well as natural hierarchy (State-district-taluka) within the feature class for each of the theme. All data elements are given a unique name/code, which are self explanatory with short forms.

5.7 **Map Composition and Output**

Map composition for atlas has been done at district and state level. A standard colour scheme has been used for the wetland classes and other layers. The digital files are made at 1:50,000 scale. The hard copy outputs are taken on A3 size.
6.0 ACCURACY ASSESSMENT

A comprehensive accuracy assessment protocol has been followed for determining the quality of information derived from remotely sensed data. Accuracy assessment involves determination of thematic (classification) as well as locational accuracy. In addition, GIS database(s) contents have been also evaluated for accuracy. To ensure the reliability of wetland status data, the project adhered to established quality assurance and quality control measures for data collection, analysis, verification and reporting.

This study used well established, time-tested, fully documented data collection conventions. It employed skilled and trained personnel for image interpretation, processing and digital database creation. All interpreted imageries were reviewed by technical expert team for accuracy and code. The reviewing analyst adhered to all standards, quality requirements and technical specifications and reviewed 100 percent of the work. The various stages of quality check include:

1. Image-to-Image Geo-referencing/Data generation
2. Reference layer preparation using NWIA post monsoon and pre-monsoon LISS-III data.
3. Wetland mapping using visual/digital interpretation techniques.
4. Geo-data base creation and organization
5. Output products.

6.1 Data verification and quality assurance of output digital data files

All digital data files were subjected to rigorous quality control inspections. Digital data verification included quality control checks that addressed the geospatial correctness, digital integrity and some cartographic aspects of the data. Implementation of quality checks ensured that the data conformed to the specified criteria, thus achieving the project objectives. There were tremendous advantages in using newer technologies to store and analyze the geographic data. The geospatial analysis capability built into this study provided a complete digital database to better assist analysis of wetland change information. All digital data files were subjected to rigorous quality control inspections. Automated checking modules incorporated in the geographic information system (Arc/GIS) were used to correct digital artifacts including polygon topology. Additional customized data inspections were made to ensure that the changes indicated at the image interpretation stage were properly executed.
Figure 9: Various combinations of the indices/spectral bands used to discriminate wetland types.
MAPS AND STATISTICS
7.0 WETLANDS OF LAKSHADWEEP: MAPS AND STATISTICS

Area estimates of various wetland categories for Lakshadweep have been carried out using GIS layers of wetland boundary, water-spread, aquatic vegetation and turbidity. In the state of Lakshadweep 48 wetlands have been delineated. Total wetland area estimated is 79586 ha (Table 4). Coastal-Natural wetlands are the only wetlands in these islands. There are only three wetland types namely; Coral, Lagoon and Sand/Beach.

In every coral-growing area and in particularly in oceanic coral reefs two diametrically opposed processes are continuously in operation. One is constructive depending the growth of coral and associated plants such as Nullipore. Other is the geological formation of conglomerate rocks and sandstones from the coral or other calcareous debris, which is destructive to the activities of animals that feed upon coral or animals and plants that bore into coral and so render it less solid and more liable for destruction due to erosion by waves and currents, and change in temperature and salinity etc (Sewell, 1935). Coral reefs are of three types namely; fringing reefs, barrier reef and atolls. Atolls rest on the summits of submerged volcanoes and usually oval or circular in shape with a central lagoon. Almost all the atolls of Lakshadweep are oriented northeast-southwest with an island towards the east, a broad, well developed reef to the west and a lagoon in between. The lagoons are open in to sea through several channels. The coral diversity is good comprising 70 species belonging to 26 genera. Of these 36 species were add latter to the inventory of Minicoy (Wafar, 1986). Several types of primary producers may be observed in the coral ecosystem. The zooxanthelle exists with coral polyps in a symbiotic mode. Boring filamentous algae are found have associated with corals. Benthic macroalgae such as sea grasses are the prolific primary producers on lagoon floor at Karavatti Island. The corals form an abode to pelagic fish resource (Rashmi and Rajesh, 1992). Corals are the most dominating of the three wetland types and accounts for 55179 ha of area that amounts to ~69 % of wetland area in Lakshadweep. There are two uncharted atolls namely; Cheriypaniyam and Baliyapaniayam which were not shown in the Survey of India topographical maps were mapped.

Lagoons may be formed by estuary outlets and delta channels completely blocked by sandbars, sandspits or sanddunes which limits access to sea. Nevertheless, as a rule lagoon will have mixing of freshwater brought by rivers and saltwater due to its access to sea. This results in complex environment wherein diversity of organisms range from freshwater type to marine through another group of organisms those show adaptability to both. However, in Lakshdweep the lagoons are very different from the mainland in the sense that they are actually coral reef lagoons wherein the water body gets enclosed in an atoll or within a barrier reef. The depth of the lagoon is appreciable and available literature indicates that the floor of these lagoons mainly contain the coral debris and calcareous sand (Gazetter of India, 1977; Anon., 1987). The smaller lagoons of Chetlat, Kiltan, Amini and Kadmat are substantially filled with sediments and show an average depth of 1 – 2.5 m while the larger ones like Bangaram, Suheli Par and Minicoy are devoid of sediments and show greater depth ranging from 10-16 m. Lagoon stands next to coral comprising 23674 ha of area. It accounts for ~30 % of wetland area followed by Sand/Beach (733 ha). Graphical distribution of wetland type is shown in figure 9. The lagoons are the only category considered for open water spread in pre-monsoon and post-monsoon. The open water spread (23674 ha) of lagoons remained unchanged in
both the seasons owing to their contact with the sea, which allows movement water perpetually. The qualitative turbidity remained low in both seasons indicating the tranquility of lagoons on these islands. Further, the absence of aquatic vegetation adds to the clarity of water. The details of type-wise aerial extents of wetland is given in the table 4 and pictorially depicted in figure 10.

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Wetcode</th>
<th>Category</th>
<th>Number</th>
<th>Total Wetland Area</th>
<th>% of wetland area</th>
<th>Open Water Post-monsoon Area</th>
<th>Pre-Monsoon Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>2100</td>
<td>Coastal Wetlands - Natural</td>
<td></td>
<td>15</td>
<td>23674</td>
<td>29.75</td>
<td>23674</td>
<td>23674</td>
</tr>
<tr>
<td>1</td>
<td>2101</td>
<td>Lagoons</td>
<td>15</td>
<td>23674</td>
<td>29.75</td>
<td>23674</td>
<td>23674</td>
</tr>
<tr>
<td>2</td>
<td>2103</td>
<td>Sand/Beach</td>
<td>18</td>
<td>733</td>
<td>0.92</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>2107</td>
<td>Coral</td>
<td>15</td>
<td>55179</td>
<td>69.33</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Sub-Total: 48 | 79586 | 100.00 | 23674 | 23674 |

Wetlands (<2.25 ha), mainly Tanks: - - 0.00 - -

Total: 48 | 79586 | 100.00 | 23674 | 23674 |

Area under Aquatic Vegetation: - -

Area under turbidity levels:
- Low: 23674 23674
- Moderate: - -
- High: - -

The Sand/Beach shows the presence of terrestrial vegetation. This category under Sand/Beach is essentially a sandy beach. In Lakshadweep these sandy beaches are characteristically located on windward side. On the other sides the sandy beaches experience the vagaries of monsoon. These beaches comprise vegetation mainly Ipomea batatas, Ipomea pescaprae, Cochorus aestivalus, Eragrostis tenella, Digitaria adscandes, Dactylcotenium aegyptium and Casurina equisetifolia. Sand/Beach accounts for ~1 % of wetland area comprising 733 ha out of 79587 ha.
SEGREGATED ISLAND-WISE WETLAND MAPS
WETLAND MAP

Minicoy Island

Legend
- Wetlands (<2.25ha)
- Roads
- Drainage (line)
- Settlements
- Town/Settlements

Location Map

Data Source:
- IRS P6 LISS IV data (Pre-monsoon and Post-monsoon Season 2006-07)

Prepared By:
- Space Applications Centre (ISRO), Ahmedabad

Sponsored By:
- Ministry of Environment and Forests, Government of India

Table

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Typecode</th>
<th>Level I</th>
<th>Level II</th>
<th>Level III</th>
</tr>
</thead>
<tbody>
<tr>
<td>1191</td>
<td>Natural</td>
<td>Lakes/Ponds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1192</td>
<td>Natural</td>
<td>On-shore lakes/Cut-off meanders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1193</td>
<td>Natural</td>
<td>High altitude wetlands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1194</td>
<td>Natural</td>
<td>Restoration wetlands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1195</td>
<td>Natural</td>
<td>Waterbodies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1196</td>
<td>Natural</td>
<td>River/Stream</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1201</td>
<td>Man-made</td>
<td>Reservoirs/Barrages</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1202</td>
<td>Man-made</td>
<td>Tanks/Ponds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1203</td>
<td>Man-made</td>
<td>Waterbodies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1204</td>
<td>Man-made</td>
<td>Salt pans</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Coastal Wetlands

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Typecode</th>
<th>Level I</th>
<th>Level II</th>
<th>Level III</th>
</tr>
</thead>
<tbody>
<tr>
<td>2101</td>
<td>Natural</td>
<td>Lagoons</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2102</td>
<td>Natural</td>
<td>creeks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2103</td>
<td>Natural</td>
<td>Sandspits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2104</td>
<td>Natural</td>
<td>intertidal mud flats</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2105</td>
<td>Natural</td>
<td>Salt marsh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2106</td>
<td>Natural</td>
<td>Mangroves</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2107</td>
<td>Natural</td>
<td>Coral reefs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2201</td>
<td>Man-made</td>
<td>Salt pans</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2202</td>
<td>Man-made</td>
<td>Aquacultural points</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
UT: Lakshadweep Islands

WETLAND MAP

Pitti Island

IRS P6 LISS-III Post-monsoon data (2006)
UT: Lakshadweep Islands

WETLAND MAP

Legend

- Wetlands (<2.5 ha)
- Roads
- Drainage (line)
- Settlements
- Town/Settlements

Location Map

- India
- Lakshadweep Islands
- Bangaram Island

Data Source:
IRS P6 LISS IV data (Pre-monsoon and Post-monsoon Season 2006-07)
Prepared By:
Space Applications Centre (ISRO), Ahmedabad
Sponsored By:
Ministry of Environment and Forests
Government of India
REFERENCES

Definitions of wetland categories used in the project

For ease of understanding, definitions of wetland categories and their typical appearance on satellite imagery is given below:

<table>
<thead>
<tr>
<th>Wetland type code</th>
<th>Definition and description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>Inland Wetlands</td>
</tr>
<tr>
<td>1100</td>
<td>Natural</td>
</tr>
<tr>
<td>1101</td>
<td>Lakes: Larger bodies of standing water occupying distinct basins (Reid et al, 1976). These wetlands occur in natural depressions and normally fed by streams/rivers. On satellite images lakes appear in different hues of blue interspersed with pink (aquatic vegetation), islands (white if non-vegetated, red in case of terrestrial vegetation). Vegetation if scattered make texture rough.</td>
</tr>
<tr>
<td>1102</td>
<td>Ox-bow lakes/ Cut off meanders: A meandering stream may erode the outside shores of its broad bends, and in time the loops may become cut-off, leaving basins. The resulting shallow crescent-shaped lakes are called oxbow lakes (Reid et al, 1976). On the satellite image Ox-bow lakes occur near the rivers in plain areas. Some part of the lake normally has aquatic vegetation (red/pink in colour) during pre-monsoon season.</td>
</tr>
<tr>
<td>1103</td>
<td>High Altitude lakes: These lakes occur in the Himalayan region. Landscapes around high lakes are characterized by hilly topography. Otherwise they resemble lakes in the plain areas. For keeping uniformity in the delineation of these lakes contour line of 3000 m above msl will be taken as reference and all lakes above this contour line will be classified as high altitude lakes.</td>
</tr>
<tr>
<td>1104</td>
<td>Riverine Wetlands: Along the major rivers, especially in plains water accumulates leading to formation of marshes and swamp. Swamps are ‘Wetland dominated by trees or shrubs’ (U.S. Definition). In Europe, a forested fen (a peat accumulating wetland that has no significant inflows or outflows and supports acidophilic mosses, particularly Sphagnum) could be called a swamp. In some areas reed grass - dominated wetlands are also called swamps. (Mitsch and Gosselink, 1986). Marsh: A frequently or continually inundated wetland characterised by emergent herbaceous vegetation adapted to saturated soil conditions. In European terminology a marsh has a mineral soil substrate and does not accumulate peat (Mitsch and Gosselink, 1986). Tone is grey blue and texture is smooth. Comment: Using satellite data it is difficult to differentiate between swamp and marsh. Hence, both have been clubbed together.</td>
</tr>
<tr>
<td>1105</td>
<td>Waterlogged: Said of an area in which water stands near, at, or above the land surface, so that the roots of all plants except hydrophytes are drowned and the plants die (Glossary of Geology, 1974). Floods or unlined canal seepage and other irrigation network may cause waterlogging. Spectrally, during the period when surface water exists, waterlogged areas appear more or less similar to lakes/ponds. However, during dry season large or all parts of such areas dry up and give the appearance of mud/salt flats (grey bluish).</td>
</tr>
<tr>
<td>1106</td>
<td>River/stream: Rivers are linear water features of the landscape. Rivers that are wider than the mapping unit will be mapped as polygons. Its importance arises from the fact that many stretches of the rivers in Indo-Gangetic Plains and peninsular India are declared important national and international wetlands (Ex. The river Ganga between Brajghat and Garh Mukteshwar, is a Ramsar site, Ranganthattu on the Cavery river is a bird sanctuary etc.). Wherever, rivers are wide and features like sand bars etc. are visible, they will be mapped.</td>
</tr>
<tr>
<td>1200</td>
<td>Man-made</td>
</tr>
<tr>
<td>1201</td>
<td>Reservoir: A pond or lake built for the storage of water, usually by the construction of a dam across a river (Glossary of Geology, 1974). On RS images, reservoirs have irregular boundary behind a prominent dyke. Wetland boundary in case of reservoir incorporates water, aquatic vegetation and footprint of water as well. In the accompanying images aquatic vegetation in the reservoir is seen in bright pink tone. Tone is dark blue in deep reservoirs while it is ink blue in case of shallow reservoirs or reservoirs with high silt load. These will be annotated as Reservoirs/Dam. Barrage: Dykes are constructed in the plain areas over rivers for creating Irrigation/water facilities. Such water storage areas develop into wetlands (Harke Barrage on Satluj – a Ramsar site, Okhla barrage on the Yamuna etc. – a bird sanctuary). Water appears in dark blue tone with a smooth texture. Aquatic vegetation appears in pink colour, which is scattered, or contiguous depending on the density. Reservoirs formed by barrages will be annotated as reservoir/barrage.</td>
</tr>
</tbody>
</table>
Tanks/Ponds: A term used in Ceylon and the drier parts of Peninsular India for an artificial pond, pool or lake formed by building a mud wall across the valley of a small stream to retain the monsoon (Glossary of Geology, 1974). Ponds Generally, suggest a small, quiet body of standing water, usually shallow enough to permit the growth of rooted plants from one shore to another (Reid et al, 1976). Tanks appear in light blue colour showing bottom reflectance.

In this category Industrial ponds/mining pools mainly comprising Abandoned Quarries are also included Quarry is defined as "An open or surface working or excavation for the extraction of stone, ore, coal, gravel or minerals." In such pits water accumulate (McGraw Hill Encyclopedia of Environmental Sciences, 1974). Ash pond/Cooling pond The water body created for discharging effluents in industry, especially in thermal power plants (Encylopedic Directory of Environment, 1988) and Cooling pond: An artificial lake used for the natural cooling of condenser-cooling water serving a conventional power station (Encylopedic Directory of Environment, 1988). These ponds can be of any shape and size. Texture is rough and tonal appearance light (quarry) to blue shade (cooling pond).

Waterlogged: Man-made activities like canals cause water-logging in adjacent areas due to seepage especially when canals are unlined. Such areas can be identified on the images along canal network. Tonal appearance is in various hues of blue. Sometimes, such waterlogged areas dry up and leave white scars on the land. Texture is smooth.

Salt pans: Inland salt pans in India occur in Rajasthan (Sambhar lake). These are shallow rectangular man-made depressions in which saline water is accumulated for drying in the sun for making salt.

Coastal Wetlands

Natural

Lagoons/Backwaters: Such coastal bodies of water, partly separated from the sea by barrier beaches or bays of marine origin, are more properly termed lagoons. As a rule, lagoons are elongate and lie parallel to the shoreline. They are usually characteristic of, but not restricted to, shores of emergence. Lagoons are generally shallower and more saline than typical estuaries (Reid et al, 1976). Backwater: A creek, arm of the sea or series of connected lagoons, usually parallel to the coast, separated from the sea by a narrow strip of land but communicating with it through barred outlets (Glossary of Geology, 1974).

Creek: A notable physiographic feature of salt marshes, especially low marshes. These creeks develop as do rivers "with minor irregularities sooner or later causing the water to be deflected into definite channels" (Mitsch and Gosselink, 1986). Creeks will be delineated; however, their area will not be estimated.

Sand/Beach: Beach is an non-vegetated part of the shoreline formed of loose material, usually sand that extends from the upper berm (a ridge or ridges on the backshore of the beach, formed by the deposit of material by wave action, that marks the upper limit of ordinary high tides and wave wash to low water mark (Clark, 1977). Beach comprising rocky material is called rocky beach.

Intertidal mudflats: Most non-vegetated areas that are alternately exposed and inundated by the falling and rising of the tide. They may be mudflats or sand flats depending on the coarseness of the material of which they are made (Clark, 1977).

Salt Marsh: Natural or semi-natural halophytic grassland and dwarf brushwood on the alluvial sediments bordering saline water bodies whose water level fluctuates either tidally or non-tidally (Mitsch and Gosselink, 1986). Salt marshes look in grey blue shade when wet.

Mangroves: The mangrove swamp is an association of halophytic trees, shrubs, and other plants growing in brackish to saline tidal waters of tropical and sub-tropical coastlines (Mitsch and Gosselink, 1986). On the satellite images mangroves occur in red colour if in contiguous patch. When mangrove associations are scattered or are degraded then instead of red colour, brick red colour may be seen.

Coral reefs: Consolidated living colonies of microscopic organisms found in warm tropical waters. The term coral reef or organic reef is applied to the rock- like reefs built-up of living things, principally corals. They consist of accumulations of calcareous deposits of corals and coralline algae with the intervening space connected with sand, which consists largely of shells of foraminifera. Present reefs are living associations growing on this accumulation of past (Clark, 1977). Reefs appear in light blue shade.

Man-made

Salt pans: An undrained usually small and shallow rectangular, man-made depression or hollow in which saline water accumulates and evaporates leaving a salt deposit (Glossary of Geology, 1974). Salt pans are square or rectangular in shape. When water is there appearance is blue while salt is formed tone is white.

Aquaculture ponds: Aquaculture is defined as "The breeding and rearing of fresh-water or marine fish in captivity. Fish farming or ranching". The water bodies used for the above are called aquaculture ponds (Encyclopedia Directory of Environment, 1988). Aquaculture ponds are geometrical in shape usually square or rectangular. Tone is blue.
Annexure – II
Details of District information followed in the atlas

State/UT : Lakshadweep

District Boundary Map

List of Districts

<table>
<thead>
<tr>
<th>District Code</th>
<th>District Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Lakshadweep</td>
</tr>
</tbody>
</table>

Source : Survey of India (Surveyed in 2004 and published in 2005)
Space Applications Centre (SAC) is one of the major centres of the Indian Space Research Organisation (ISRO). It is a unique centre dealing with a wide variety of disciplines comprising design and development of payloads, societal applications, capacity building and space sciences, thereby creating a synergy of technology, science and applications. The Centre is responsible for the development, realisation and qualification of communication, navigation, earth & planetary observation, meteorological payloads and related data processing and ground systems. Several national level application programmes in the area of natural resources, weather and environmental studies, disaster monitoring/mitigation, etc are also carried out. It is playing an important role in harnessing space technology for a wide variety of applications for societal benefits.

SAC is a host institution for the training programmes related to Satellite Communication, Satellite Meteorology and global change under the Centre for Space Science & Technology Education in Asia and the Pacific (CSSTEAP) affiliated to the United Nations (UN).

http://www.isro.org